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HOT-WIRE METHOD IN A NONSTATIONARY VARIATION

R. A. Mustafaev UDC 536.23:536.453

Starting from the solution of the thermal-conductivity equation, a nonstationary variation of the

"hot-wire" method is developed in the case of monotonic heating of a calorimetric system which
permits determination of the temperature dependence of the thermal conductivity of liquids in a

broad temperature range from one test.

The stationary "hot-wire" method is extensively used at this time to investigate the coefficient of thermal
conductivity of gases and liquids [1]. This method, as all stationary methods (plane layer, coaxial cylinders),
is distinctive in the long duration of the test, requires a complex apparatus, and does not permit determination
of the temperature dependence of the coefficient of thermal conductivity from one test. Using this method, the
experimenter should expect the buildup of a stationary state in a calorimetric system every time when mea-
suring the coefficient of thermal conductivity. Consequently, the determination of the coefficient of thermal
conductivity of one liquid in a broad temperature range takes several days at a minimum. Hence, several, prin-
cipally foreign, papers devoted to a nonstationary variation of the "hot-wire" method have recently appeared
[2-15]. The theory of the method in application to rarefied gases is elucidated in especial detail in [16]. The
"hot-wire" method differs from all other nonstationary methods in that the coefficient of thermal conductivity
is determined directly by this method, and not the coefficient of thermal diffusivity. However, it is not very
exact because of the difficulty of recording exactly the rapidly varying wire temperature during the measure-
ment. In this respect, the method mentioned in the relative variation in which the recording device acts as a
zero indicator [17] is of definite interest.

An attempt is made below to extend the "hot-wire®” method to the case of a monotonic change in the tem-
perature of a calorimetric system.

The design scheme of the method under consideration reduces to the following. A fine metal wire of
radius R (Fig. 1) is stretched coaxially in a bulky metal tube 1 of radius Rothrough a sealed electrical insulat-
ing plug 2. The liquid being investigated fills the gap between the wire 3 and the tube 1. A constant-power
electrical current passes through the wire during the entire test. In the stationary variation of the method, the
whole system (module) is strictly thermostated.

Let us assume that the whole system is surrounded by a heat-insulating shell which rises smoothly in
temperature under the effect of the external heater 4 in such a way that the temperature of the shell approxi-
mately equals the temperature of the module. In this case the heat flux of the inner heater 3 is expended com-
pletely in a slow rise in the temperature of the module and the liquid. The power W(T) of the Lenz—Joule heat
developed by the wire, the temperature drop #(7) in the layer under investigation, and the rate of temperature
rise b(r) of the system are measured in the test.
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Fig. 1. Calorimeter diagram,
in principle, and tempera-
ture distribution therein: 1)
metal tube; 2) plug; 3) plati-
num wire; 4) heater.

The geometric parameters of the calorimetric system are assumed known and the temperature drop
H7) is small,
The theory of such a system reduces to the following. The temperature field of a cylindrical layer is
described by the thermal-conductivity equation
o¢ L ot 1 ot (1)
ot | r " or a it
If the temperature drop 4(r, 7) = t(r, T)~t{Rgy, T) is introduced, then in place of (1) we have

N b

[ _ -, 2
ar'z B r or a ( )
Let us represent (2) in the form
o [ 0% b
o Il = . 3
or (.'r or ) a 3)
Integrating (3), we obtain
& (r, r):—z-r2+Alnr—}—B, {4)
4a
where A and B are constants of integration determined from the following boundary conditions:
'ﬁ (ri T) lr=R 0= O’
9 (r, T)!r:R‘=ﬂ"— '
( 3 170 (5)
) % (r, 1) | _ W
or §r=Ri Fi
From conditions (5) we obtain
B—— -2 R:_AnR, (6)
4q o o ‘
Ry b 2 2
Gi_o=Aln—} ——— (Ro—R{), {7
1-0 Ro 4a ( [+] 1.) )
W b 2
= —— e—— R i. 8
2nih, 22 ! ®
After substituting (8) infto (7), we will have
W' Ro b 2 9 Ro
Vi o= In— — — —R{{1+2In-=2 1} .
o= 5 ——In R " {Ro Rl( - 2In Ri)] 9)

The first member in the right side of this last equation determines the stationary component and the second
member, the nonstationary component, of the drop #;_g. It is hence important that the second member in the
right side of (9) be small compared to the first in the test.
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From (9) we will have

A=

14 Ro _ R
I b1 ° 1
T n 4 —— e 6 [Ro R1(1+21n R )] (10

If it is taken into account that part of the heat liberated by the wire is absorbed, then W = W,—Cgb.

Taking account of the heat absorbed by the wire, the computation formula becomes

W, In 20
—__1 ——
W)’—fnh‘fi-o (1 — Adcy), 11)
where

cb 1 2R} Cob
Aog = — .
%= o, (m Re ~ Ri—H )+ W% 42

Ry

It follows from the computation formula (11) obtained that to determine A(t) in the method under consideration it
is sufficient to know the temperature dependences W, (t) and b(t) in the heating section. Measurements of the
power Wq(t) of the electrical source can be accomplished by the usual means — by recording the current I(t)
and voltage drop U;(t) on the working section of the wire. It is convenient fo represent the correction Ag¢ in
the form

1 Y R
Aoe = —. RE—RE[1+42In =2 2°°Rln —a 1
‘4 Ay _ o” ° ' ( i R; )l+ Y : Ry )
Such a form of the correction is convenient for computations in the design stage of the experimental apparatus.
To estimate the optimal heating rate, the dependence

(13)

4083 Ao,
ek

1

(14)

badm=

2
it

resulting from (13) can be used. As is seen from (13), the correction Ac¢ has a clear structure, contains suf-
ficiently definite parameters, and admits of an analytical estimation, ‘all the more since its magnitude does
not usually exceed 1%.

It is expedient to use the relationships (13) and (14) in the design stage of the experimental apparatus in
order to assure a reduction in the magnitude of the correction Ag, to negligibly small values. The initial data
for the thermal computation of the calorimetric system in the design stage are the expected values of the ther-
mal conductivity of the substances to be investigated, the admissible temperature drop in the layer #i-o, and
the geometric parameters of the system Ry, Rj.

Let us solve a numerical example on the basis of the obtained computation formula. Let the calorimetric
apparatus be intended to investigate the coefficient of thermal conductivity of nonmetallic liquids with a thermal
conductivity of A < 0.2 W/m-deg. The geometric parameters of the calorimetric system are as follows: R; =
0.05 mm and Rg = 0.4 mm. The temperature drop in the layer is maintained at $j_o = 10 deg.

‘Taking cy = 2 - 10% J/m?- deg for organic fluids, cy¥, = 2.8+10° J/m®. deg for the platinum wire, and start-
ing from (14), for the admissible magnitude of the heating rate we obtain byqm = 25 Ade.

The optimal values of the heating rate ordinarily lie w1th1n the limits b = (0.1-0.3) deg/sec. Let us take
b = 0.1 deg/sec. In this case the correction is Ao, = 0.4°10%2 =0 4%. For Ao, = 0.01 the admissible
heating rate is 0.25 deg/sec.

As is seen from the computation presented, measurements in the nonstationary mode are completely ad-
missible in the hot-wire method. If the cy of the substance grows even 10-fold near the critical domain, then
even in this case a test in the nonstationary mode can be set up and the correction A, can be maintained negli-
gibly small. Hence, all the ordinary corrections inherent in the stationary variation of the method (heat efflux
through the end faces, readings on the temperature sensors, radiation, etc.) remain valid, since the test mode
remains as before, in practice.* Hence, it can be hoped that the experimental error in metrological respects
will be as before (2-2.5%) without any noticeable degradation in accuracy. It should be noted that the electrical

*The method of taking these corrections into account is elucidated in detail in [1], for example.
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resistivity of the wire will change with the rise in temperature, which will result in a change in heat liberation
in the wire during the measurement. This effect can be computed by the method in [4, 5] and [15]. However,
the effect mentioned can be cancelled completely by experimental means also for a low heating rate [14].

If the test duration to obtain the temperature dependence A(t) inatemperature range between room tempera-
ture and 400°C is a minimum of several days in the stationary mode, then this dependence can be obtained in
the stream 7= At|b = 380/0.1 ~ 63 min in the dynamic mode with a b = 0.1 deg/sec heating rate.

NOTATION
Rj and R, are the wire and tube radii, respectively;
b = dt/dr is the heating rate of system;
B{U] is the temperature drop;
W(T) is the power;
A, a are the coefficients of thermal conductivity and thermal diffusivity, respectively;
C, C4 are the specific heats of the fluid and wire, respectively;
Y, C are the fluid density and specific heat;
Yo and cg are the density and specific heat of the platinum wire;
Avg is the correction to the specific heat of the layer.
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